【摘要】目的研究不同类型、不同难度的认知任务组合情况下,脑力负荷变化情况的精细表征。方法设计一种基于逻辑运算、工作记忆和运动执行的脑力负荷诱发范式,利用该范式开展24名男性受试者参与的实验,采集受试者主观量表评分、任务绩效和脑电图(EEG)信号,并计算EEG信号多个频带的功率特征。结果主观量表和任务绩效分析表明,计算难度、N-back等级均能诱发出不同等级的脑力负荷;EEG信号分析表明,脑力负荷的增加伴随着前额叶theta波增强和alpha波的减弱;利用支持向量机(SVM)构建脑力负荷分类模型,能实现平均75%单因素三分类正确率和81.7%的脑力负荷三分类正确率;利用逐步回归模型可实现对脑力负荷的预测。结论 EEG信号的频域特征能够反映多因素认知任务的脑力负荷变化情况,可以对认知因素水平和脑力负荷进行分类和连续预测。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中外医疗》 2015-07-06
《公关世界》 2015-07-06
《中外医疗》 2015-07-06
《重庆高教研究》 2015-06-26
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点